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Abstract. For frequentist inference, the efficacy of the closed-form (CF) likelihood
approximation of Ait-Sahalia (2002, 2007) in financial modeling has been widely
demonstrated. Bayesian inference, however, requires the use of MCMC, and the
CF likelihood can become inaccurate when the parameters 0 are far from the MLE.
Due to numerical stability problems, the samplers can therefore become stuck when
(typically) in the tails of the posterior distribution. It may be possible to address
this problem by using numerical integration to estimate the intractable normaliz-
ers in the CF likelihood, but determining the limiting distribution after using such
approximations remains an open research question. Auxiliary variables have been
used in conjunction with MCMC to address intractable normalizers (see Mpller
et al. (2006)), but choosing such variables is not trivial. We propose a MCMC
algorithm (called EMCMC) that addresses the intractable normalizers in the CF
likelihood which 1) is easy to implement, 2) yields a sampler with the correct lim-
iting distribution, and 3) greatly increases the stability of the sampler compared
to using the unnormalized CF likelihood in a standard Metropolis-Hastings algo-
rithm. The efficacy of our approach is demonstrated in a simulation study of the
Cox-Ingersoll-Ross (CIR) model.
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1 Introduction

Diffusions are used to model continuous time processes and are therefore
commonly used in financial models. Data are observed at discrete points
in time, and in all except a few typical cases the likelihood 7(x|6) is not
analytically available, hindering classical and Bayesian inferential techniques.

Available Bayesian MCMC techniques are mainly based for high fre-
quency augmentation and are computationally intense due to high depen-
dence between the parameters and missing data. A Bayesian approach that
is based on the closed-form (CF) approximation of Ait-Sahalia (2002) for one-
dimensional diffusions is derived in Di Pietro (2001). This approach avoids a
data augmentation scheme.
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For univariate diffusions, the CF approximation is an expansion based
upon expanding the likelihood around a normal density using Hermite poly-
nomials. This expansion converges to the true, unknown likelihood function
as the number of terms in the Taylor-like expansion increases. In fact, the
first two terms in the expansion have been shown to be sufficient in yielding
very accurate approximations of the true likelihood function for many of the
types of data one encounters in finance. The CF likelihood approximation,
which we denote by mcp(x|60), should be used with caution for very volatile
models or sparse data-sets (see Stramer and Yan (2007)).

Unfortunately, the CF likelihood does not integrate to 1; its normalizer
Z(0) is an intractable function of the parameters . While the normalizer
is very close to 1 for values of 6 close to the maximum likelihood estimate
(MLE), it can differ markedly from 1 when 6 is far from the MLE. This is not
a hindrance for practitioners simply seeking to determine the MLE, but can
cause difficulties for Bayesian practitioners seeking to use MCMC techniques
to sample from the posterior distribution of # (which is proportional to the
product of the likelihood 7(x|#) and prior 7(6)). Such samplers explore the
posterior distribution of 8, and may require the evaluation of the likelihood
far from the MLE. Since the CF likelihood is least accurate in such instances,
stability problems can arise in the MCMC sampler; for example, the MCMC
sampler may get stuck in the tails of the posterior, typically when 6 is far from
the MLE. In DiPietro (2001), the unknown normalizer in the CF likelihood
is approximated using numerical integration techniques.

Clearly, many models of interest are multivariate. While Ait-Sahalia (2007)
provides an extension for multidimensional diffusions, numerical integration
methods for approximating the normalization constant can often be quite
slow. However, we believe that the flexibility of our proposed algorithm, de-
scribed in Section 3, may allow for its use in multivariate models.

There are numerous instances in which the likelihood of interest contains
a normalizer that is an intractable function of the parameters. Different (ap-
proximate) inferential approaches have been proposed in the literature; for
example, see Berthelsen and Mgller et al. (2003), Heikkinen and Penttinen
(1999), and Bognar (2008). A method that avoids such approximations was
first proposed in Mgller et al. (2006) by introducing a cleverly chosen auxiliary
variable into the Metropolis-Hastings (M-H) algorithm so that the normaliz-
ing constants cancel in the M-H ratio. A simpler version that avoids having
to specify an appropriate auxiliary variable, and which inspired our work, is
proposed in Murray et al. (2006).

2 Bayesian model details

In what follows, assume the CF likelihood can be written as

mor(x|0) &f gé}(dgi) (1)
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where g is the known, unnormalized CF likelihood, and Z is the intractable
normalizer which depends upon the parameters. The goal is to use MCMC
techniques to sample from the posterior distribution

mor(0|x) x mop(x]0)m(9),

where 7(f) is the prior distribution on 6, and base inference upon the sam-
pler output. If mor(x|0) integrated to 1, then one could simply construct
a standard M-H algorithm. However, this is not the case, and therefore ad-
ditional care must be taken (otherwise the limiting distribution will not be
mer(0]x)). The following MCMC algorithm is capable of dealing with the
intractable (non-unity) normalizers Z by generating an external variate in
such a way as to cancel the intractable normalizers present in the M-H ratio.
For lack of a better term, we call the following algorithm extended MCMC.
The EMCMC algorithm can be shown to satisfy detailed balance, where the
limiting distribution is mop(6]x).

3 Extended MCMC (EMCMC)

The EMCMC algorithm proceeds as follows.

1. Choose a starting value () where t = 0.

2. Propose a new value for (), say #*, from some proposal density q(6*|6(")).
The proposal density may update one randomly chosen component of
6 at a time, or the proposal density may attempt to update multiple
components of #*) simultaneously.

3. Generate w = (wi,...,w,) from mop(w|0*) (i.e. generate w from the
likelihood conditional on the proposed parameter vector 8*). This can be
accomplished by using the Euler approximation with a M-H accept/reject
step.

4. Accept 6* (i.e. set 0D = 9*) with probability

) g (9“)I9*)wcp(w|9(t>)}
1) q(0+10®)) wor(w|6)

mor(x|0*) (0
| mor(x]|0®) w0
)

A = min

i [1 900/ Z) x(0) g(016) g <w|o<t>>/z<o<f>>}
9(x[60)/Z(0) w(60) q(6°]67)) g(wl0")/Z(0)
[ ey w(0%) a(616%) g <w|e<t>]
| 9(x100) 7(60) (610 g(wo")

otherwise reject 6* and set 8t = ("), Generating w from wcp(w|0*)
allows the normalizing constants Z(-) to cancel, leaving only tractable ele-
ments in 4. This modified acceptance probability does not upset detailed
balance, thus the limiting distribution remains 7o p(x|6).

5. Repeat steps (2), (3), and (4) T times (T large).
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4 CIR simulation study

A simulation study was carried out to determine the efficacy of our EMCMC
algorithm in the CIR model. This model was chosen because the true transi-
tion density is known (a non-central chi-square), and hence a comparison can
be made between Bayesian analyses using 1) the true non-central chi-square
transition density (and, hence, true likelihood) in a standard M-H sampler, 2)
the unnormalized CF likelihood in a M-H sampler, and 3) the CF likelihood
with correction for the normalizer using the EMCMC algorithm. The same
priors and proposal densities were used throughout.

Recall that the CIR model is characterized the stochastic differential equa-
tion

dX, = B(o — Xp)dt + o/ X, AW,

where « is the mean reverting level, 3 is the speed of the process, and o
is the volatility parameter. The true transition density is characterized by a
non-central chi-square distribution; the second order (K = 2) (unnormalized)
CF likelihood approximation can be found in ATt-Sahalia (1999).

The priors were specified according to DiPietro (2001); w(0) = w(«, 8,0) =
Ti0.1)(@) - I(0,00)(B) - 07 (9 00y (), where I denotes the indicator function. A
random-scan type algorithm was used to simulate from the posterior, where a
single component of § was randomly chosen to be updated at each iteration.
All samplers had the same starting points, allowing convergence and mixing
behavior to be informally assessed. Most of the chosen starting points were
in the tails of the posterior distribution (for most of the chains, « was started
at 0.03 or 0.30, 3 was started at 0.07 or 0.25, and o was started at 0.04 or
0.10).

Using the non-central chi-square transition density, a dataset with n =
500 points was simulated from the CIR model with A = 1.0 (yearly data),
a =0.07, 8 =0.15, and o = 0.07. The exact (EXT), normalized CF (NCF),
and unnormalized CF (UCF) analyses each employed 10 chains of length
10,000 (not including a 1,000 iteration burn-in period). The posterior mean
from each chain was computed, and the mean and standard deviation of the
10 posterior means is summarized in the top portion of Table 1. Note that
all 10 of the chains in the UCF analysis ran off into the tails of the posterior
distribution and became stuck (due to numerical overflows), regardless of
starting values. Neither the EXT or NCF analyses showed such behavior.

The standard deviations in the NCF analysis are slightly inflated com-
pared to the EXT analysis. This is entirely expected since the EMCMC al-
gorithm has lower acceptance rates than a true M-H algorithm. The lower
acceptance rate causes inflated Monte Carlo errors (i.e. more variability in
the posterior means), and leads to the inflated standard deviations seen in
Table 1. In and of itself, (slightly) inflated MC errors are not problematic;
longer chains would eliminate the discrepancy. Considering, however, the
added complexity of the EMCMC algorithm, the difference appears rela-



Bayesian Inference for Diffusion Processes 5

| [T EXT | NCF | UCF
A=1 [a[x][0.0614 (1.9¢-4); 0.288]0.0595 (3.3¢-4); 0.197] NA (NA); NA

B]x]|0.1562 (1.7e-3); 0.261|0.1579 (2.5e-3); 0.225 NA (NA); NA

o|x(|0.0704 (1.5e-4); 0.356]0.0703 (2.0e-4); 0.251 NA (NA); NA

A=1/4 x([0.0670 (7.0e-4); 0.413(0.0671 (1.8e-3); 0.330(0.0672 (1.9e-3); 0.428

x(]0.2231 (4.0e-3); 0.570(0.2162 (5.6e-3); 0.446(0.2230 (5.4e-3); 0.582

A =1/12]|a|x]||0.1165 (8.5e-2); 0.749]0.1103 (4.1e-2); 0.651|0.1183 (1.0e-2); 0.763

[x[/0.0670 (7.7e-5); 0.326]0.0669 (1.7e-4); 0.238|0.0670 (6.7e-5); 0.320
x(]0.0670 (1.9e-3); 0.378|0.0677 (4.1e-3); 0.247|0.0664 (2.6e-3); 0.378

A=1/52

( ); ( )i
( ); ( )i
( ); ( )i
( ); ( )i
( ); ( )
[x[|0.0734 (1.3e-4); 0.367(0.0732 (1.1e-4); 0.274]0.0734 (8.3¢-5); 0.368
( ); (4.1e-2);
( ); ( )i
( ); ( )i
( ); ( )i
( ); ( )i

—~|—~|[=[—~|—~||=~|—~|—~

);
);
);
);
0.1651 (9.5e-3); 0.662]0.1738 (9.1e-3); 0.563]0.1662 (1.2¢-2); 0.579
);
);
);

RILAIZ|L ||| R
X

x(]0.2715 (8.9e-3); 0.350(0.2688 (1.0e-2); 0.239|0.2759 (8.5e-3); 0.325

Q

x[[0.0694 (5.4e-5); 0.178]0.0694 (5.2¢-5); 0.152|0.0694 (5.1e-5); 0.175

Table 1. Mean and standard deviation (in parentheses) of the marginal posterior
means from the CIR simulation study with A =1,1/4,1/12, and 1/52; acceptance
rates for each move-type are listed in italics.

tively benign. The posterior means in the NCF analysis appear to mimic the
output from the EXT analysis quite well.

To determine the effect of a smaller time increment A, a dataset with
n = 500 was simulated from the CIR model with A = 1/4 (quarterly data)
(, B, and o remained unchanged). Two of the ten chains in the UCF anal-
ysis got stuck in the tails (stuck chains were not included in the tabular
summaries), suggesting that the CF likelihood has some difficulty in the tails
of the posterior distribution. Again, all chains from the EXT and NCF anal-
yses behaved well. With n = 500 and A = 1/12 (monthly data), one of
the ten chains in the UCF analysis got stuck in the tails, while none of the
chains from the EXT and NCF analyses had stability issues. Finally, when
n = 2,000 and A = 1/52, three of the ten chains in the UCF analysis became
stuck; all chains from the EXT and NCF analyses converged and mixed well
(to attain more optimal (i.e. lower) acceptance rates (see below), this last
analysis used slightly more diffuse proposal densities than employed in the
other analyses). The results are summarized in Table 1.

Note that the EMCMC algorithm yields slightly lower acceptance rates
(the proportion of the time that a proposed change to a parameter is ac-
cepted) than a true M-H sampler. Examination of the acceptance rates in
Table 1 indicates that when A = 1, for example, the EXT analysis accepted
28.8% of the proposed a—candidates, while the NCF analysis accepted 19.7%.
The deflation in the acceptance rates, however, is not dramatically different
from a true M-H algorithm (used in the EXT analysis) for all A—values that
were considered.
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5 Discussion

Using the CF likelihood for Bayesian inference poses challenges for practi-
tioners. The CF likelihood is most accurate when the parameters 6 are near
the MLE, but Bayesian MCMC samplers may need to explore parts of the
posterior o g (0]x) for 6 distant from the MLE. As such, using the CF like-
lihood in a standard M-H algorithm can cause the sampler to become stuck
in the tails of the posterior distribution. Using numerical integration tech-
niques to estimate the intractable normalizer in the CF likelihood improves
convergence and mixing behavior, but the resulting limiting distribution re-
mains unclear. Auxiliary variable techniques (Mgller et al. (2006)) require the
specification of an auxiliary variable, but this is not a trivial matter in many
instances. Our proposed EMCMC algorithm (based on work by Murray et al.
(2006)) greatly improves convergence and mixing behavior, is straightforward
to implement, has good acceptance rates, and the limiting distribution can
be shown to be the posterior distribution. Based upon the promising results
from our simulation study, it appears as though the EMCMC algorithm may
be a very effective tool for the adoption of the CF likelihood in the Bayesian
inferential framework.
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